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Simulating water for visual effects demands a high resolution sur-
face with precise dynamics, but a fine discretization of the entire
fluid volume is generally inefficient. Prior adaptive methods us-
ing octrees or unstructured meshes carry large overheads and im-
plementation complexity. We instead show the potential of stick-
ing with coarse regular Cartesian grids, using detailed cut cells at
boundaries, and introducing a p-adaptive Discontinuous Galerkin
(DG) method to discretize the pressure projection step in our fluid
solver. This retains much of the data structure simplicity of regular
grids, more efficiently captures smooth parts of the flow, and offers
the flexibility to increase resolving power where needed.

We use the El Topo library [Brochu and Bridson 2009] for tracking
the water surface with an explicit triangle mesh. Explicit surface
tracking has excited much interest, offering unmatched efficiency
in following thin and detailed features — but without a matching
discretization of the flow physics or appropriate regularization, fine-
scale features may behave badly or even cause instability. We also
use FLIP particles for advection, including the surface mesh ver-
tices. This novel combination greatly reduces numerical dissipation
found in previous fluid solvers using explicit surface tracking.

Adaptive Discontinuous Galerkin

The Discontinuous Galerkin approach to discretizing partial dif-
ferential equations is closely related to the famous finite element
method. For DG, the domain is partitioned into cells, and some
(typically polynomial) approximation space is assumed within each
cell. DG allows each cell to have different approximation functions
regardless of discontinuities across cell boundaries, and the cells
need not be simple shapes. Of the many DG methods in the lit-
erature, we use the Local Discontinuous Galerkin (LDG) method
[Cockburn et al. 2005], which is well-studied, flexible, and has no
mesh-dependent parameters. DG has already been used in anima-
tion for elasticity [Kaufmann et al. 2009].

For the elements of the DG simulation, we use the cut cells pro-
duced by intersecting the Cartesian grid cells with the water vol-
ume defined by the surface mesh. This discretizes the PDE in the
detailed shape of the high resolution surface - directly capturing
thin sheets and other small features.

The principle technique of a p-adaptive approach is to use differ-
ent approximation spaces in different cells. Within cells near the
boundary, we use high-degree polynomials for high-fidelity solu-
tions. Away from the surface, where less detail is needed, we use
low-degree polynomials for efficiency. This p-adaptive approach
allows us to use a coarse regular grid for the whole domain, while
still achieving fine-scale details where desired.

In contrast to h-adaptive techniques, such as octrees, p-adaptation is
an unexplored avenue within computer graphics. For smooth func-
tions, p-refinement can produce more accurate results with fewer
degrees of freedom than h-refinement. For non-smooth functions,
h-refinement is more appropriate, but water simulations typically
have smooth solutions. The major exception is when topology
changes occur and introduce a nearly-discontinuous velocity. Even
in this case, we find our p-adaptive approach works well.
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Figure 1: In this water simulation we used a 4x5 grid with quartic
polynomials for velocity in each cell. Advection is handled by FLIP
particles - shown with black ticks. Notice the very thin sheets, well
below the grid resolution.

We apply several techniques to ensure good conditioning of the ma-
trix produced by LDG. First, we merge cut cells that have very
small volume with a larger adjacent cell. Because El Topo does
not produce arbitrarily thin sheets, such a merger is always possi-
ble. Second, we choose a basis that is adapted to the cut cell shape
by fitting a simplex to each cut cell and using the Lagrange basis
with nodal points distributed on this simplex.

Our 2D implementation shown in Figure 1 captures thin sheets,
splashes, and overturning waves all well below the grid resolution.
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